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Abstract

We outline some important points and basic mathemat-
ical features from the paper, Band Representations and
Topological Quantum Chemistry [1], which reviews re-
cent work on group representation theory for topologi-
cal quantum chemistry and topological crystalline insu-
lators. Specifically, the paper describes construction of
”band representations”, and how they can be combined
with symmetry constraints to classify whether a crystal
will exhibit topological behavior.

Introduction

In Sec. 1, we review fundamentals of crystal symmetry
and introduce notation to be used throughout. In Sec.
2, we describe the construction of band representations.
In Sec. 3, we discuss how (”quasi”) band representations
can be used to classify topological materials.

1 Crystal Symmetry

For a crystallographic space group G, we denote each
symmetry g ∈ G as

g = {R|v} (1)

where R is a point group operation (rotation, reflection,
or identity) and v is a translation. The action of g on a
spatial point q is

gq = Rq + v (2)

We also denote E as the identity point group operation.
The theory in Cano and Bradlyn’s paper is applied

towards symmorphic space groups, which can be written
as a semidirect product of a point group P and the group
of translations T , i.e., G = P n T . Non-symmorphic
space groups are those for which a g = Rq + v ∈ G ex-
ists where v is not a lattice translation (e.g., G contains
glide or screw symmetries).

1.1 Position space: Wyckoff positions
and site-symmetry groups

For each point q in position space, the ”site-symmetry”
or ”stabilizer” group of q, denoted Gq, is the finite sub-
group of G that leaves q invariant. I.e.,

Gq ≡ {g|gq = q}. (3)

The orbit of a point q is the set {gq|g ∈ G}. The site-
symmetry group Gq′ of a point q′ in the orbit of q is
conjugate to Gq (i). It can subsequently be shown that
Gq′ and Gq are isomorphic (ii). We prove claims (i) and
(ii) in section S1.

A Wyckoff position is defined as the set of points
whose site-symmetry groups are conjugate to each other.
Thus, any points in each others’ orbits are in the same
Wyckoff position. Note, however, that it is possible for
two points to have the same site-symmetry groups and
thus be in the same Wyckoff position even if the points
are not in the same orbit.

Given a Wyckoff position containing a point q, the
Wyckoff position’s multiplicity, n, is given by the num-
ber of points in the orbit of q residing in the conventional
unit cell. We label each Wyckoff position as nα, where
α = a, b, c, ... is a letter that orders the Wyckoff posi-
tions in ascending n and distinguishes different Wyckoff
positions of the same n. For example, we might have
positions 1a, 1b, 1c, 1d, 2e, etc. Note that a Wyckoff po-
sition with multiplicity 1 might actually correspond to a
single, ”generalized” point. That is, a point of a specific
form, e.g., ( 1

2 , 0, z).

Maximal Wyckoff positions are those whose site-
symmetry groups are not a subgroup of any other site-
symmetry group. For example, the general position
(those points which are not invariant under any symme-
tries of the space group) are not maximal Wyckoff posi-
tions since its site-symmetry group {E|0} is a subgroup
of all other site-symmetry groups. In Sec. 2, elemen-
tary band representations will be labelled by maximal
Wyckoff positions.

1.2 Momentum space: k-stars and little
groups

The action of g = {R|v} ∈ G on a point k in the Brillouin
zone (BZ) is gk = Rk. Stated informally, translations do
not act in momentum space (due to the translation op-
erator T̂ = exp[−icp̂/~] commuting with the momentum
operator p̂).

The little group Gk of a point k is the set of space
group symmetries that leave k invariant up to a recipro-
cal lattice vector, i.e., Gk ≡ {g|gk = k +

∑
i nigi} ⊂ G

for reciprocal lattice vectors {gi}. Note that transla-
tional and non-symmorphic (glide and screw) symme-
tries do not leave points in position space invariant and
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are thus not in any site-symmetry groups. However,
since translations do not act in momentum space, non-
symmorphic and translational symmetries can be con-
tained in little groups.

The little co-group G̃k is defined by modding the sub-
group of lattice translations T ⊂ G out of Gk (G̃k =
Gk/T ). The little co-group is thus analogous to the site-
symmetry group.

The momentum space analog of a Wyckoff position
is the star. The star of a point k, denoted k∗, con-
sists of all points within the BZ in the orbit of k, i.e.,
k∗ = {gk|g ∈ G} (where G is still the space group of the
direct lattice). Just as site-symmetry groups of position
space points in the same orbit are conjugate, so too are
the little groups of any k′ ∈ k∗ conjugate to Gk. We
prove this in section S2.

We shall see later that irreps of the space groups are
labeled by k∗ and can be induced from little group irreps.

2 Band Representations

In traditional solid state physics classes, the symmetries
of band structures are analyzed via the little group at
single k points, where Bloch wave functions form the ba-
sis of the representations of the little group. Instead, we
examine the case where the band representation basis is a
set of Wannier functions exponentially localized in posi-
tion space, whose energies are described by tight-binding
models. This band representation can be decomposed
into a direct sum of representations at each k∗.

2.1 Induced representations

Bradley and Cracknell note that induced representations
are a group theoretical method for constructing the rep-
resentation of a group from the reps of a subgroup which
is not necessarily invariant [2]. Thus, induced representa-
tions provide a tool for building representations of space
groups from site-symmetry group reps of Wyckoff posi-
tions in position space, or from little group reps in mo-
mentum space.

Specifically, given a group G and subgroup H with
coset decomposition

G =
⋃
µ

gµH, (4)

each representation ρ of H generates an induced repre-
sentation of G, denoted as ρG ≡ ρ ↑ G. If we index the
rows/columns of ρ with i, j, then the rows/columns of
ρG are indexed by iµ,jν where µ,ν run over the cosets in
(4). Then, for h ∈ G,

[ρG(h)]iµ,jν = [ρ̃(g−1µ hgν)]ij , (5)

and

[ρ̃(g)]ij =

{
[ρ(g)]ij g ∈ H
0 else

(6)

2.2 Band representations induced in po-
sition space

We now build a representation of a space group by induc-
tion from the representation of a site-symmetry group.
First, we define a space groupG and site-symmetry group
Gq of a site q. We let the set {qµ}, (µ = 1, 2, ..., n) be
the sites in the Wyckoff position of q within the primi-
tive unit cell, defining q1 ≡ q. For a chosen unit cell and
for each qµ, choose a point symmetry gµ ∈ G satisfying

qµ = gµq. (7)

Following (4), we have a coset decomposition

G =

n⋃
µ=1

gµ(Gq n T ) (8)

where (GqnT ) is the semidirect product between Gq and
T . A semidirect product is similar to a direct product
except that only the first subgroup, Gq, of the product is
an invariant/normal subgroup of the full group, G. Cano
and Bradlyn generalize (5) to construct the induced rep-
resentation of G as

[ρG(h)](i,µ,t),(j,ν,t′) = [ρ̃(g−1µ {E|t}h{E|t′}−1gν)]ij (9)

for any h ∈ G, where ρ̃ is defined in (6).
Recall our Wyckoff position labels are in the form

of nα. We combine the representations {ρα} of each
Wyckoff position’s site-symmetry group to get a band
representation ⊕

α

(ρα ↑ G). (10)

2.2.1 Wannier basis

We define the basis for our induced representation ρG
in (9) as the Wannier functions. Let Wi1(r), i =
1, ...,dim(ρ), be a set of Wannier functions localized on
q. Since the Wannier functions serve as a complete ba-
sis, acting on Wi1(r) with a point symmetry g ∈ Gq must
yield a linear combination:

gWi1(r) = [ρ(g)]jiWj1(r). (11)

Within the primitive cell, a Wannier function localized
on each Wyckoff position qα is defined as

Wiα(r) = gαWi1(r) = Wi1(g−1α r), (12)

where we have used the fact that applying a space group
operation to a function is equivalent to applying the in-
verse operation to the coordinate system. For example,
for a lattice vector t,

{E|t}Wiα(r) = Wiα(r− t). (13)
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Since i runs from 1 to dim(ρ), the multiplicity of Wyckoff
position qα is n, and the number of translation vectors
N is the number of unit cells in the system, we have
n×dim(ρ)×N basis functions Wiα(r − t) on which ρG
acts.

Now, for h = {R|v} ∈ G and gµ from the coset de-
composition (8), we can decompose the combined oper-
ation hgµ as

hgµ = {E|tνµ}gνg (14)

for a unique choice of coset gνH, site symmetry g ∈ Gq,
and lattice vector tνµ ≡ hqµ − qν . We prove (14) in S3.

Combining the previous 4 equations, we find that the
action of the induced band rep ρG on the Wannier func-
tions is

ρG(h)Wiµ(r− t) =

dim(ρ)∑
j=1

[ρ(g)]jiWjν(r−Rt− tνµ),

(15)

which we prove in S4. Note ν, g, and tνµ are uniquely
determined by the coset decomposition in (14).

2.3 Band representations induced in mo-
mentum space

Since band structures are typically interpreted in mo-
mentum space, it is useful to construct band representa-
tions in momentum space. The Fourier transform of the
Wannier function is given as

aiα(k, r) =
∑
t

eik·tWiα(r− t), (16)

where the sum is over lattice vectors t ∈ T . We have
exchanged N unit cells in real space to N k points in the
BZ. It turns out that the action of the induced represen-
tation ρG in momentum space (again with h = {R|v} ∈
G) is

ρG(h)aiα(k, r) = e−i(Rk)·tβα

dim(ρ)∑
j=1

[ρ(g)]jiajβ(Rk, r)

(17)

where, as in (15), β, g, and tβα are uniquely determined
by the coset decomposition in (14). We prove (17) in S5.

Note that momentum space is N -dimensional as there
are N distinct values of k in the BZ. Thus, the represen-
tation of ρG(h) acting on momentum space must be an
N ×N matrix. Furthermore, note there are n coset rep-
resentatives gα as in (8) (recalling n is the multiplicity
of the Wyckoff site used to build the induced rep), and i
runs from 1 to dim(ρ). Thus, we can interpret ρG(h) as
being comprised of ndim(ρ)×ndim(ρ) blocks, each map-
ping a function aiα(k, r) to another at some point k′.
Following Bradley and Cracknell, there can only be one

non-zero block in each row labeled k′ and column labeled
k [2]. These will correspond to the condition k′ = Rk
(as seen on the RHS of (17)). We denote this block
ρkG(h). Thus, the band rep is completely described by the
nonzero blocks {ρkG(h)} for all k in the BZ and h ∈ G.

2.4 Little group representations from
band reps

We have seen that band reps can be constructed from
reps of the site-symmetry groups at Wyckoff positions.
The ”opposite” method of constructing subduced repre-
sentations can also be considered, wherein little group
reps are formed from the band reps.

A non-zero block ρkG(h) of the N × N matrix ρG(h)
will be diagonal if and only if ρkG(h) maps a point k to
itself (i.e., hk = k). This occurs when h ∈ Gk, where Gk

is the little group of k. Thus, when h ∈ Gk, ρkG(h) forms
a representation of Gk that we denote ρG ↓ Gk.

2.5 Composite and elementary band rep-
resentations

From [3], two band representations ρG and σG are equiv-
alent iff ∃ a unitary matrix-valued function S(k, t, g)
smooth in k and continuous in t such that for all g ∈ G,
S(k, 0, g) = ρkG(g), S(k, 1, g) = σk

G(g), and S(k, t, g) de-
fines a band representation for t ∈ [0, 1]. This equivalence
definition is stronger than requiring the same little group
reps at each k since band reps can share the same little
group reps at each k but differ by a Berry phase.

A composite band representation is defined as a band
rep that is equivalent to a direct sum of two or more other
band reps.

An elementary band rep (EBR) is a band rep which
is not composite. They can be thought of as a mini-
mal basis for band representations. From [3], there are
a finite number of EBRs, indexed by irreps of maximal
Wyckoff positions. They are enumerated on the Bilbao
Crystallographic Server. Spin-orbit coupling is incorpo-
rated by using the double-valued/SU(2) reps of the site-
symmetry groups, and time-reversal symmetry is induced
from time-reversal symmetric irreps of the site-symmetry
groups.

3 Classifying topological systems

Since band representations correspond to band struc-
tures with exponentially localized Wannier functions,
they describe bands that are adiabatically connected to
an atomic limit (i.e., they can be continuously evolved
such that the Wannier functions localize on individual
atoms without closing the band gap). The atomic limit
is the limit where electrons cannot tunnel between or-
bitals, so making a cut between unit cells does not have
any impact on the energies or eigenstates. Thus, the
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atomic limit does not allow for surface states (distinct
from the bulk states) characteristic of nontrivial topo-
logical materials. It follows that topological bands are
not band representations.

Instead, we consider ”quasi-band representations”,
which are a collection of little group representations
forming a band structure by satisfying ”compatibility re-
lations” at every k-point.

A compatibility relation might be the condition that
the dimension N of the little group representation at ev-
ery k be the same (i.e., the band structure has N bands).
A less trivial compatibility condition might relate neigh-
boring k-points (see the full paper for an example).

Every band rep is a quasi-band rep. However, there
exists quasi-band reps which are not band reps: they
preserve all crystal symmetries in momentum space, but
lack exponentially localized Wannier functions. These
describe topological bands.

3.1 Symmetry indicated phases

Topological bands are ”symmetry indicated” when they
can be distinguished by their little group reps. The
method for doing so follows [4]. On a high level, the
method involves mapping band structures in each space
group G to a vector space VG with dimension equal to
the number of irreps of the little groups of all symmetry-
inequivalent k points in the BZ. We label each set of
symmetry-equivalent points as [k]. For little group irrep
ρi[k], where i indexes the little group irreps of points [k],
a vector in VG is defined as

v =
∑
i,[k]

ni[k]ρi,[k]. (18)

With this construction, quasi-band representations map
to a vector in VG in which the {ni[k]} satisfy the com-
patibility relations of G. Meanwhile, every EBR rep ρak
maps to a vector ea such that every atomic limit (non-
topological) band structure can be identified with a vec-
tor

a =
∑
a

naea (19)

with non-negative coefficients {na}. Symmetry-indicated
topological bands can then be identified and classified
by finding non-negative integer vectors v which are not
expressible as (19). An algorithm using a Smith decom-
position (an integer-valued version of singular value de-
composition) allows one to determine whether v is ex-
pressible as (19). The Smith decomposition can also be
used to derive symmetry indicators, following [5]. The
form of these symmetry indicators identifies the type of
topological material one has.

3.2 Beyond symmetry indicators

The existence of a nontrivial symmetry indicator is a
sufficient but not necessary condition for bands to be
topologically nontrivial. I.e., there exists cases where
bands are topologically nontrivial despite having little
group irreps identical to a sum of EBRs. In this case,
the method using little group irreps and symmetry indi-
cators to identify topological bands as described in Sec.
3.1 is inadequate.

The argument for the previous statements is as fol-
lows. Recall that topologically trivial band structures are
equivalent to a sum of EBRs. In momentum space, the
sum gives the little group reps under which the eigen-
states transform at every k. However, while compat-
ibility relations can constrain the connectivity of EBR
bands, they do not require they always be connected. If
the compatibility relations allow for bands transforming
in an EBR ρk to be disconnected in the BZ, then the
EBR ρk must be able to be written as a direct sum of
quasi-band representations, e.g., ρk = ρ1k⊕ρ2k (in which
case ρ1k and ρ2k transform two invariant subspaces, or
two disconnected bands, in momentum space). If ρ1k
and ρ2k are both band representations, then ρk is an
EBR that is the sum of two band representations, which
contradicts the definition of an EBR. Thus, either ρ1k or
ρ2k is a quasi-band rep, i.e., topologically nontrivial.

To identify these topological bands which are hidden
from detection by little group irreps/symmetry indica-
tion, one must use analytic properties of band represen-
tations such as Berry phases and curvatures.

4 Conclusion

Combining all the machinery discussed here, a strategy
for rapid computational screening for identifying topo-
logical materials might involve using ab-initio methods to
compute little group representations for occupied bands
in a material, checking that they satisfy the compatibility
relations, and finally computing symmetry indicators.

Beyond symmetry indicators, one can search for topo-
logical materials by choosing space groups and crystal
structures which are known to frequently yield topologi-
cal behavior, and then searching for disconnected EBRs.

5 Supporting Information

5.1 S1

Proof of (i). Gq,Gq′ ⊂ G are termed conjugate sub-
groups if ∃g ∈ G satisfying g−1Gqg = Gq′ . For g ∈ Gq,
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let q′ be in the orbit of q (so q′ = gq). Then ∀g′ ∈ Gq′ ,

(g−1Gq′g)q 3 (g−1g′g)q

= g−1g′q′

= gq′

= g−1gq

= q

where we used the fact that q′ is in the orbit of q (so
q′ = gq) in the first and third steps, and the definition
of a site-symmetry group (3) in the second step. Thus,
(g−1Gq′g) = Gq, so Gq′ and Gq are conjugate subgroups
of the space group G.

Proof of (ii). The map φ : Gq′ → Gq (defined earlier
as (g−1Gq′g) = Gq) is an isomorphism if it is homomor-
phic and bijective. First we prove it is homomorphic.
For g′1,g′2 ∈ Gq′ ,

φ(g′1g
′
2) = g−1g′1g

′
2g = g−1g′1g

−1gg′2g = φ(g′1)φ(g′2). q.e.d.

To prove the map is bijective, we must show it is injec-
tive, or 1-to-1, and surjective, or onto. Now we show the
map is injective.

g′ ∈ kerφ iff φ(g′) = 0

iff g−1g′g = 0

iff g′ = 0

so kerφ = ∅, implying φ is injective. The map is trivially
surjective by the fact that Gq and Gq′ are conjugate (so
∀g ∈ Gq = g−1Gq′g, ∃g′ ∈ Gq′ such that φ(g′) = g).

5.2 S2

Here we prove that the little group Gk′ of a point k′ ∈ k∗

is conjugate to Gk. Let k′ = g′k where g′ ∈ G. Then,
letting {gi} be the set of primitive reciprocal lattice vec-
tors,

Gk′ = {a|ak′ = k′ + nigi}
= {a|ag′k = g′k + nigi}
⊂ G

where we have denoted elements of Gk′ as a and used
Einstein notation to implicitly sum over i. We want to
show that g−1Gk′g = Gk.

(g′−1Gk′g′)k ⊃ g′−1ag′k
= g′−1(g′k + nigi)

= k + g′−1nigi

= k + njgj

where we have taken a representative element in the first
line, used our definition of Gk′ in the second, and noted
that g′−1nigi gives another reciprocal lattice vector in
the final step.

To see that g′−1nigi gives another reciprocal lattice
vector, we follow a proof given by Dresselhaus [6]. For
some reciprocal lattice vector Ki = nigi and real space
lattice vector Rn, where neither are necessarily primitive,
we have from the definition of reciprocal lattice vectors
that

Rn ·Ki = 2πNnj ≡ 2πN1

for an integer Nnj depending on n,j. We suppose for
fixed choice of i, j that Nnj is some integer N1. If g is a
point group symmetry operator of the real space (direct)
crystal, then gRn leaves the crystal invariant (in fact,
gRn is another lattice vector). Thus,

(gRn) ·Ki = 2πN2 (20)

for some integer N2 not necessarily equal to N1. Fur-
thermore, scalar products are invariant under any point
symmetry operation. Thus, we apply the point group
symmetry g−1 to each vector in (20) to find

g−1(gRn) · (g−1Ki) = 2πN2

= Rn · (g−1Ki)

Thus, point group symmetries of the real space lattice
also bring reciprocal lattice vectors to reciprocal lattice
vectors. More specifically, applying a point group sym-
metry g to a real space lattice vector is equivalent to
applying g−1 to the corresponding reciprocal lattice vec-
tor.

5.3 S3

First, we have

gνgq = gνq = qν (21)

where we used gq = q (3) in the first step and qν = gνq
(7) in the second. Now, we find

{E|tνµ}gνgq = {E|tνµ}qν
= qν + (hqµ − qν)

= hqµ

= hgµq,

so hgµ = {E|tνµ}gνg. We used (21) in the first line, then
(2) and tνµ ≡ hqµ − qν in the second.

5.4 S4

ρG(h)Wiµ(r− t) ≡ hWiµ(r− t)

= h{E|t}Wiµ(r)

= {E|Rt}hWiµ(r)

= {E|Rt}hgµWi1(r)

= {E|Rt}{E|tνµ}gνgWi1(r)

= {E|Rt + tνµ}gν [ρ(g)]jiWj1(r)

= {E|Rt + tνµ}[ρ(g)]jiWjν(r)

= [ρ(g)]jiWjν(r−Rt− tνµ)
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where we have used (13) in the first step; the fact that
for hq = Rq + v,

h{E|t}q = R(q + t) + v

= Rq +Rt + v

= {E|Rt}hq,

in the second step; (12) in the third; (14) in the fourth;
(11) in the fifth; and (12) again in the sixth. Note that
gν does not act on [ρ(g)]ji since [ρ(g)]ji is just a matrix
element.

5.5 S5

We prove (17). Combining (15),

ρG(h)Wiµ(r− t) =

dim(ρ)∑
j=1

[ρ(g)]jiWjν(r−Rt− tνµ),

and (16),

aiα(k, r) =
∑
t

eik·tWiα(r− t),

we find

ρG(h)aiα(k, r)

=
∑
t

ρG(h)eik·tWiα(r− t)

=
∑
t

eik·tρG(h)Wiα(r− t)

=
∑
t

eik·t[ρ(g)]jiWjβ(r−Rt− tβα)

=
∑
t

ei(Rk)·(Rt)[ρ(g)]jiWjβ(r−Rt− tβα)

= e−i(Rk)·(tβα)
∑
t

ei(Rk)·(Rt+tβα)[ρ(g)]jiWjβ(r−Rt− tβα)

= e−i(Rk)·(tβα)[ρ(g)]jiajβ(Rk, r)

≡ e−i(Rk)·(tβα)

dim(ρ)∑
j=1

[ρ(g)]jiajβ(Rk, r)

where we have used (16) in the first line, linearity of
matrix multiplication in the second, (15) in the third,
orthogonality of rotations (i.e., invariance of scalar prod-
ucts to rotations) in the fourth, and (16) again in the
sixth line (noting that Rt and tβα are lattice vectors,
and so have no effect on the sum over lattice vectors t).
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