REES CHANG

reeswc2@illinois.edu () rees-c.github.io

Q github.com/rees-c

Research Interests

I am interested in accelerating materials discovery with machine learning. My PhD has focused on developing approaches to few-shot materials property prediction and deep generative modeling of crystalline materials. I actively collaborate with computer scientists and materials scientists.

Education

2020-	Ph.D. in Materials Science & Engineering, University of Illinois at Urbana-Champaign
present	Advisor : Elif Ertekin
	 Developing a space group invariant deep generative model for crystal inverse design, co-advised by Ryan Adams (Princeton CS)
	 Creating deep learning frameworks for few-shot materials property prediction, co-advised by <u>Yuxiong Wang</u> (UIUC CS)
2016-2020	B.S. with Honors in Materials Science & Engineering, Cornell University Thesis Advisor : Julia Dshemuchadse

Awards

- 2022 | NSF Graduate Research Fellowship
- 2021 DIGI-MAT NSF Research Traineeship
- 2020 UIUC Hamer Fellowship
- 2017 Cornell Engineering Learning Initiatives Research Award

Work Experiences

Undergraduate Researcher, Cornell University
Advisor : Julia Dshemuchadse
 Independent project using coarse-grained molecular dynamics and Random Embedding Bayesian optimization to accelerate discovery of self-assembling structures
DOE SULI Intern at the Materials Project, Lawrence Berkeley National Lab
Advisor : Anubhav Jain
 Created high-throughput density functional theory calculation workflow using Compressed Sensing Lattice Dynamics to obtain phononic properties of materials Contributed open-source code to pymatgen
Undergraduate Researcher, Cornell University Advisor : Tobias Hanrath
 Developed a genetic algorithm to optimize nanostructure in an amorphous silicon thin film Achieved 822% increase in light absorption as calculated with finite-difference time domain electromagnetic simulations

Summer	Research and Development Intern, NASA Goddard Space Flight Center
2018	Mentor : Dr. Larry Hess
	 Designed, fabricated, patterned, and characterized multilayer thin film UV detectors with photolithographic and optical methods
Summer	Research Assistant, Columbia University
2015, 2016	Advisor : Robert Farrauto
	- Synthesized and characterized new carbon dioxide adsorbents and methanation catalysts
	with gas flow reactors, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis

Publications

2023+	Rees Chang , Alex Guerra, Nick Richardson, Ni Zhan, Ryan Marr, Elif Ertekin, Ryan Adams A space group invariant generative flow network for crystals, <i>In preparation</i> , 2023
2022	Rees Chang, Yu-Xiong Wang, Elif Ertekin
	Towards overcoming data scarcity in materials science : unifying models and datasets with a mixture of experts framework. npj Comput Mater 8, 242 (2022). Paper

Presentations

2023	A Crystal Generative Model Conditioned on Space Group
	Oral presentation at Materials Research Society Spring Meeting MD01.06 in San Francisco, CA.
2022	Overcoming Data Scarcity in Materials Science with Mixtures of Experts
	Oral presentation at Materials Research Society Spring Meeting in Honolulu, HI.

Teaching

UIUC

2022-2023	 Undergraduate research mentoring Mentored 2 undergraduates on independent research projects through the National Center for Supercomputing Applications' Students Pushing Innovation Program
2021	 Engineers Volunteering in STEM Education Virtually volunteered at Franklin Middle School to promote science and introduce materials science concepts

Cornell University

Fall 2019	 Teaching Assistant for CS 4780 : Machine Learning for Intelligent Systems Held weekly office hours and graded assignments for a supervised statistical ML course of over 600 students
Fall 2019	Volunteer Teaching Assistant in Environmental Science for the Cornell Prison Education Program — Led discussions and activities for 17 incarcerated students at Cayuga Correctional Facility
Fall 2017	Teaching Assistant in MSE 2610 : Mechanical Properties of Materials — Graded problem sets for a course of 80 sophomores and first-year graduate students

Selected Coursework

UIUC

 Graduate : Condensed Matter Physics, Quantum Mechanics, Mathematical Physics I and II, Statistical Mechanics, Atomic Structure and Bonding

Cornell University

- Materials Science : Computational Chemistry; Computational Materials Science; Materials Chemistry; Electronic, Dielectric, and Magnetic Properties of Materials; Mechanical Properties of Materials; Kinetics and Phase Transformations; Condensed Matter Thermodynamics
- Computer Science : Supervised Machine Learning, Unsupervised Machine Learning, Large-Scale Machine Learning, Numerical Linear Algebra, Bayesian Estimation, Networks, OOP and Data Structures

Skills

- **Proficient** : Python (PyTorch, Numpy, Pandas, pymatgen), Git, Bash, Larger
- Experienced : JAX, VASP, HOOMD-Blue, TensorFlow, BoTorch, Mongo, MATLAB, HTML/CSS, Mathematica, Java